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Abstract

We present an algorithm based on maximum likelihood for the estimation and renormalization (marginalization) of

exponential densities. The moment-matching problem resulting from the maximization of the likelihood is solved as an

optimization problem using the Levenberg–Marquardt algorithm. In the case of renormalization, the moments needed

to set up the moment-matching problem are evaluated using Swendsen�s renormalization method. We focus on the

renormalization version of the algorithm, where we demonstrate its use by computing the critical temperature of the

two-dimensional Ising model. Possible applications of the algorithm are discussed.

� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Exponential densities are, partly due to their nice mathematical features, widely used in the modeling of

densities of systems of interacting variables in different contexts, ranging from Hamiltonian systems to im-

age processing and bioinformatics (see [1] and references therein). As a result, there is an increased interest

in algorithms for estimating and manipulating such densities numerically. What we offer here is a general

algorithm that allows the estimation of parameters of exponential densities. In addition to estimating the

parameters of an exponential density, and this is the main focus in the present work, it allows the renor-
malization of a known exponential density. Renormalization amounts to calculation of marginal densities

in a way that the functional form of the density is retained (see [2] for a more detailed account of the
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connections between renormalization and probability theory). Since we want to retain the mathematical

structure of the density, the marginal density that we compute will not always be exact. There is a trade-

off between efficiency and accuracy in such calculations that is well known in the context of real-space ren-

ormalization in statistical physics [3,4]. For the test case presented here (the 2D Ising model of interacting

spin variables), this does not turn out to be harmful. Interest in the evaluation of marginal probability den-
sities is present in many different settings ranging from graphical models (the inference problem) [5] to

reductions of systems of differential equations [6,7].

The algorithm is based on maximum likelihood estimation. We should mention here the algorithm of

Geyer and Thompson [8] for the estimation of the parameters of an unknown exponential density, which

is also based on maximum likelihood but whose approach is different from ours (see also [9]). To the best of

our knowledge, the algorithm that we present here for renormalization is the first one to be based solely on

maximum likelihood (see also [6] for a different approach based on conditional expectations). As will be

explained more below, the numerical implementation of the algorithm requires the solution of an optimi-
zation problem. The solution of the optimization problem through the Levenberg–Marquardt algorithm is

efficient and robust. It, also, avoids some problems associated with more conventional methods like steepest

descent and Newton�s. The advantage of the Levenberg–Marquardt algorithm becomes especially crucial in

the case of renormalization, where one needs to determine very accurately the parameters of the renormal-

ized (marginal) exponential density. For the example we present (the 2D Ising model of spins), this allows

the accurate determination of the critical temperature.

Suppose we are given a number of independent samples from a density and we try to fit an exponential

density to these samples by maximizing their likelihood. Whether we are looking for the parameters of an
unknown exponential density or the renormalized parameters of a known exponential density, maximum

likelihood estimation of these parameters leads to a moment-matching problem. In other words, we want

to determine the parameters of an exponential density so that a finite number of its moments match the

moments computed from the given samples. In the present context, the word moment stands for the empir-

ical average (expectation value) of a, not necessarily polynomial, function of the random variables. For the

problem of estimating the parameters of an unknown exponential density, the moments needed to set up

the moment-matching problem are computed by using the samples of the unknown density to which we

are trying to fit the exponential density. For the problem of estimating the renormalized parameters of a
known exponential density, the moments needed to set up the matching problem are computed using

Swendsen�s renormalization method [4]. In both cases, the equations that define the moment-matching

problem contain, in general, nonlinear functions of the parameters to be estimated. We solve the matching

problem as an optimization problem using the Levenberg–Marquardt algorithm (see e.g. [10]).

The paper is organized as follows. In Section 2, we present the algorithm for the estimation of the param-

eters of an unknown exponential density. We also present the modifications needed to renormalize a known

exponential density. In Section 3, the algorithm is used, first to estimate, and then to renormalize the

parameters of the two-dimensional Ising model of ±1 spins. The estimates of the renormalized parameters
are used to locate the critical temperature of the model. In the final section, we discuss possible applications

of the algorithm.
2. The algorithm

In this section, we present an algorithm that allows the estimation of parameters of exponential densi-

ties. We examine two cases. In the first case we are given a number of samples from a multivariate density
and we estimate the parameters for an exponential representation of the density. In the second case, we are

given the parameters of a multivariate exponential density and we are presented with the problem of

computing marginal probabilities so that the form of the density remains the same.
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2.1. Estimation of parameters for an unknown exponential density

We begin our presentation with a few facts about families of exponential densities and convex analysis

(see [11,12,1]). Let x = (x1, . . .,xn) be an n-dimensional random vector taking values in Nn � Rn: The set

Nn = N1 · N2 · . . .Nn, where x1 2 N1, . . .,xn 2 Nn. Also, let wk(x), k = 1, . . ., l be a collection of functions of
x. The functions wk are known as potentials or sufficient statistics. Let w = (w1, . . .,wl) be the vector of po-

tential functions. Associated with the vector w is a vector a = (a1, . . .,al) whose elements are called canonical

or exponential parameters. The exponential family associated with w is the collection of density functions

(parametrized by a) of the form
pðx; aÞ ¼ expð�ha;wðxÞiÞ
ZðaÞ ; ð1Þ
where ha;wðxÞi ¼
Pl

k¼1akwkðxÞ and ZðaÞ ¼
R
Nn expð�ha;wðxÞiÞ dx: The exponential family is defined only

for the set
A ¼ fa 2 RljZðaÞ < 1g: ð2Þ

If A is open, the exponential family is called regular. We will restrict our attention to regular families,
so that in all the theorems stated below the assumption of regularity will be implied. Usually the expo-

nential density is defined without the minus sign, but we incorporate it in anticipation of the case of

Hamiltonian systems like the Ising model that we examine in Section 3. In that case we have

H(x) = Æa,w(x)æ, where H(x) is the Hamiltonian of the system and thus, the exponential density is

the Boltzmann density. In the case where the variables xi, i = 1, . . .,n take only a discrete number of

values, the integration is replaced by summation over the possible values for each of the xi. If the func-

tions wk(x) are linearly independent, the representation is called minimal. Otherwise, it is called over-

complete. The distinction between minimal and overcomplete representations will be used later when we
formulate the moment-matching problem.

Suppose that we are given a collection of N independent samples of an n-dimensional random vector

x. In general, we do not know which density the samples are drawn from. There are many examples in

practical applications where the random vector comes from a exponential density (see [1]). However,

even if we do not know that the samples are drawn from an exponential density, we can try to fit

an exponential density to the samples. This will become clearer when we formulate the moment-match-

ing problem and exploit some properties of the exponential densities. The basic idea behind the algo-

rithm we present here is to estimate the unknown parameter vector a by maximizing the likelihood
function of the samples. For a collection of N independent samples of the random vector x, the like-

lihood function L is defined as (see e.g. [13])
L ¼
YN
j¼1

pðxj; aÞ; ð3Þ
where p(xj,a) is the unknown exponential density whose parameters a we wish to determine. We associate a

potential function wk, k = 1, . . ., l with every parameter ak. Maximization of L with respect to the parame-

ters ak produces an estimate �a for a. Under suitable regularity conditions, the sequence of estimates �a for

increasing values of N is asymptotically efficient and tends, with probability one, to a local maximum in

parameter space. From now on we will use the notation a instead of �a to denote the maximum likelihood

estimate of the parameters keeping in mind that this is only an estimate of the parameters. In addition, we

will be working with the logarithm of the likelihood logL, since it does not alter the position of the max-
imum and also leads to formulas that are more easily manipulated. Differentiation of logL with respect to

the ak and setting the derivative equal to zero results in
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Ea½wkðxÞ� ¼
1

N

XN
j¼1

wkðxjÞ; k ¼ 1; . . . ; l; ð4Þ
where
Ea½wkðxÞ� ¼
R
Nn wkðxÞ expð�ha;wðxÞiÞ dxR

Nn expð�ha;wðxÞiÞ dx ; ð5Þ
is the expectation value of the function wk with respect to the density p(x,a). The right side of (4) is the

average (moment) of the function wk as calculated from the given samples. The l equations in (4) define

the moment-matching problem. What we want to do is to estimate the parameters a so that the conditions

in (4) are satisfied. The question is whether such a problem has a solution, and if it does whether it is un-

ique. To answer this we resort to the theory of exponential densities and convex analysis.

First we should note that the moments of the potential functions define an alternative parametrization of

the exponential family. This is known as mean parametrization. In fact, let l 2 Rl be the vector of moments

of the potential functions. Also, define the set M as
M ¼ fl 2 Rlj9pð�Þ :
Z
Nn
wðxÞpðxÞ dx ¼ lg: ð6Þ
Note that M is a convex set and that in the definition of M we do not restrict the density p(Æ) to the expo-

nential family. The density p(Æ) is any density that realizes l. Typically, the exponential family {p(x,a)|a 2 A}

is only a strict subset of all possible densities. Since we are interested in exponential densities, we have to find
the relation between the set A of admissible parameter vectors and the setM. This will allow us to answer the

question whether the moment-matching problem admits an exponential density as a solution.

For a given vector of potentials w, define the mapping K: A! M as
KðaÞ ¼ Ea½wðxÞ� ¼
Z
Nn
wðxÞpðx; aÞ dx: ð7Þ
Whether there exists a parameter vector a satisfying (4) depends on the properties of the mapping K. In
particular, it depends on: (i) if K is one-to-one and hence invertible on its image and (ii) what is the image

of A under K. There are two theorems that characterize the properties of K (see [1]). For the first theorem

we need the definition of the relative interior of a set. The relative interior of a set is the interior taken with

respect to its affine hull. A key result from convex analysis states that for any non-empty convex set its rel-

ative interior is non-empty.

Theorem 1. The mapping K is onto the relative interior of M.

For Theorem 2 we need the distinction between a minimal and an overcomplete representation.

Theorem 2. The mapping K is one-to-one if and only if the exponential representation is minimal.

Theorem 2 in conjunction with Theorem 1 guarantees, for minimal exponential representations, the exis-

tence of a unique parameter vector for each point in the relative interior of M. Of course, there is the ques-

tion of what happens for points in the closure of M that are not in the relative interior. To answer that we

use one more result from convex analysis.

Theorem 3. Let M be a convex set in Rl. Let x a point in the relative interior of M and y a point in the closure

of M. Then kx + (1 � k)y belongs to the relative interior of M for 0 < k 6 1.

As we have mentioned before, the exponential family typically describes only a strict subset of all pos-

sible densities that give rise to the setM. However, Theorems 1–3 tell us that this is enough for the moment-

matching problem. In the case of an overcomplete representation, there is no longer a one-to-one
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correspondence between A and K(A). But this is not a problem. For an overcomplete representation, the

solution for the moment-matching problem is no longer unique but it exists. Any of the solutions are

equally admissible, since all of them reproduce the same moments.

Now that we have defined the moment-matching problem we have to find a way to actually estimate the

parameter vector a. Eq. (4) contain, in general, nonlinear functions of the parameters. Moreover, except for
very special cases, these nonlinear functions are unknown or very difficult to manipulate analytically. Thus,

we have to tackle the problem of estimating the parameter vector numerically. We can define the l-dimen-

sional vector f(a) = (f1(a), f2(a), . . ., fl(a)) as
fkðaÞ ¼ Ea½wkðxÞ� �
1

N

XN
j¼1

wkðxjÞ; k ¼ 1; . . . ; l: ð8Þ
The moment-matching problem amounts to solving the system of (nonlinear) equations fk(a) = 0,

k = 1, . . ., l. Two popular candidates to perform such a task are the method of steepest descent and New-

ton�s method. However, both have their drawbacks. The method of steepest descent converges but can have

very slow convergence, while Newton�s method converges quadratically but it diverges if the initial guess of

the solution is not good. We choose to solve the moment-matching problem as an optimization problem

using the Levenberg–Marquardt (LM) algorithm (see e.g. [10]). This is a powerful iterative optimization

algorithm that combines the advantages of the method of steepest descent and Newton�s method. First,
let us write the moment-matching problem as an optimization problem. Define the error function �(a) as
�ðaÞ ¼ 1

2

Xl
k¼1

�2k ¼
1

2

Xl
k¼1

f 2
k ðaÞ; ð9Þ
where �k = fk(a). The problem of minimizing �(a) is equivalent to solving the system of equations fk(a) = 0,

k = 1, . . ., l i.e., the zeros of � are solutions of the system fk(a) = 0, k = 1, . . ., l and vice versa. The LM algo-

rithm uses a positive parameter k to control convergence and the updates of the parameters at step m + 1

are calculated through the formula
amþ1
k ¼ amk � ½JTJ þ kdiagðJTJÞ��1JTfðamÞ; ð10Þ
where J ¼ ofi
oaj

ja¼am ; i; j ¼ 1; . . . ; l is the Jacobian of f(am) and JT its transpose. The matrix diag(JTJ) is a

diagonal matrix whose diagonal elements are the diagonal elements of (JTJ). In the literature, the name

Levenberg–Marquardt is also used to denote the algorithm in (10) with diag(JTJ) replaced by the unit ma-

trix I. For the case where we use the unit matrix I instead of diag(JTJ), it is straightforward to see the con-

nection with the methods of steepest descent and Newton�s. For k = 0 the algorithm reduces to Newton�s
method, while for very large k we recover the steepest descent method. The modification (due to Marqu-
ardt) of using diag(JTJ) becomes important in the case where k is large. In this case if we only used the

unit matrix I almost all information coming from (JTJ) is lost. On the other hand, since (JTJ) provides

information about the curvature of �, use of the matrix diag(JTJ) allows us to incorporate information

about the curvature even in cases with large k. In the numerical simulations we used both forms of the algo-

rithm. The form in (10) gave superior results.

We have to prescribe a way of computing the Jacobian J(am). The element Jij of the Jacobian is given by
J ijðamÞ ¼ �ðEam ½wiðxÞwjðxÞ� � Eam ½wiðxÞ�Eam ½wjðxÞ�Þ; ð11Þ
for i, j = 1, . . ., l (note that the Jacobian is symmetric) So, all the quantities involved in Eq. (10) can be ex-

pressed as expectation values with respect to the mth step parameter estimate am. We compute these expec-

tation values using the Metropolis Monte Carlo algorithm. This can make the algorithm expensive since the

density has to be sampled at each step. However, the cost of the algorithm can be reduced by parallelization

of the Monte Carlo sampling procedure. Also, note that if one uses as potential functions (non-orthogonal)
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polynomials, the condition number of the Jacobian matrix grows fast with the order of polynomials. An ill-

conditioned Jacobian can lead to catastrophic errors in the evaluation of the parameter vector. This is espe-

cially crucial in the renormalization version of the algorithm, where one wants to use the parameter vector

to look for possible phase transitions and their associated critical properties. This point will become clearer

in Section 3 where we present results for the 2D Ising model of spins.
We conclude this section with some comments about the value of k and the convergence criterion used to

stop the iterative process. Since k acts as a regulator between the steepest descent and Newton aspects of the

algorithm, its value should be determined in a way that brings out the advantages of the two methods. The

starting value of k was chosen to be 1. When we detected a streak of a few error-decreasing steps, the value

of k was decreased by a factor of 10. On the other hand, if the error increased, we repeated the step with the

value of k increased by a factor of 10. We also need to prescribe a convergence criterion. We used the rel-

ative error criterion, i.e., the algorithm is stopped if |(�new � �old)/�old| < RTOL. The value of RTOL is deter-

mined by the accuracy of the Monte Carlo sampling. The relative error criterion is not enough on its own
because there is the possibility of a very small step while the algorithm is still far away from the minimum of

the error. Such a small step would pass the relative error criterion and the algorithm would stop. To avoid

such false convergence, we added an extra convergence check criterion. Whenever the relative error crite-

rion was satisfied, we checked that the error value was acceptable under the absolute value criterion

max
16k6l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj�kj=2Þ

p
=jlkj < ATOL where lk ¼ 1

N

PN
j¼1wkðxjÞ. Note that the absolute error criterion has to take

into account the magnitude of the moment. Also, ATOL cannot be smaller than the accuracy afforded

by the Monte Carlo sampling. If the error did not pass the absolute error criterion, the algorithm was

not stopped even if the relative criterion was satisfied. Finally, we added a constraint on the total number

of iterations allowed and on the maximum value of k.
2.2. Renormalization (marginalization) of a known exponential density

We present the necessary modifications to the above scheme in the case when we know the parameters of

an exponential density and we want to compute marginal densities. Suppose that we know the parameter

vector a for a given vector w(x) of potential functions for an n-dimensional random vector x. The exponen-

tial density associated with these parameters and potentials is expð�ha;wðxÞiÞ
ZðaÞ . Suppose that we want to retain

only the first m variables. The vector x can be written as x ¼ ðx̂; ~xÞ; where x̂ is the vector of the first m vari-

ables and ~x is the vector of the remaining n–m variables. Denote the exponent asH(x) = Æa,w(x)æ (this is just
a notation, it does not imply that we are only considering Hamiltonian systems). The problem of finding a
function Ĥðx̂Þ such that
expð�Ĥðx̂ÞÞ ¼
Z
Nn�m

expð�HðxÞÞ d~x; ð12Þ
is well-defined, at least for a vector x of finite dimensionality. However, as we have already mentioned in the

introduction, we not only want to compute exponential marginal densities, but do so while retaining the
mathematical form of the exponent. This means that we want the marginal density�s exponent Ĥðx̂Þ to have

the form Ĥðx̂Þ ¼ hâ; ŵðx̂Þi. The functions ŵkðx̂Þ; k ¼ 1; . . . ; l have the same form as the functions wk(x), but

are defined only over the m variables. We can think of the representation of the exponent through the po-

tential functions as an expansion of the functions H and Ĥ in functions of x and x̂, respectively. The func-

tions H and Ĥ are expanded using the same form of potential functions (on different sets of variables). It is

clear that the way we have chosen to represent the marginal density can result in this density being only

approximate. The reason is that the marginal density may involve potential functions in addition, or dif-

ferent, from the potential functions that we have chosen. How much of a problem this will turn out to
be, depends on our choice of potential functions. If one has no physical intuition or prior knowledge about
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the form of the potential functions, one can use as potential functions polynomials in the reduced vector x̂.

For example, if the random vector is continuous, one could use products of one-dimensional Legendre

polynomials. Usually, one augments the vector of potential functions of the original density by adding com-

ponents with the corresponding parameters set to zero. The additional parameters may or may not acquire

nonzero values for the marginal density, depending on how well we choose them.
Thus, the problem we are addressing is whether we can find a parameter vector â such that
expð�hâ; ŵðx̂ÞiÞ ¼
Z
Nn�m

expð�ha;wðxÞiÞ d~x: ð13Þ
If (13) holds, then the normalization constant Z satisfies ZðâÞ ¼ ZðaÞ; since
ZðâÞ ¼
Z
Nm

expð�hâ; ŵðx̂ÞiÞ dx̂ ¼
Z
Nm

� Z
Nn�m

expð�hâ; ŵðxÞiÞ d~x
�
dx̂ ¼

Z
Nn

expð�ha;wðxÞiÞ dx

¼ ZðaÞ ð14Þ
Eq. (13) can be used again to compute the marginal density for a subset ^̂x of x̂ and so on. Also it can be

applied to more general groupings of variables in x, e.g., the renormalization scheme that we will use in
Section 3 (see also [3]).

Now we turn to the problem of estimating the parameter vector â. Since the marginal density is also of

exponential form, we can apply the algorithm of Section 2.1. The resulting moment-matching problem is
Eâ½ŵkðx̂Þ� ¼
1

N

XN
j¼1

ŵkðx̂jÞ; k ¼ 1; . . . ; l; ð15Þ
where
Eâ½ŵkðx̂Þ� ¼
R
Nm ŵkðx̂Þ expð�hâ; ŵðx̂ÞiÞ dx̂R

Nm expð�hâ; ŵðx̂ÞiÞ dx̂
; ð16Þ
is the expectation value of wk with respect to the density expð�hâ; ŵðx̂ÞiÞ=ZðâÞ. If we look at Eq. (15), we see

that we need samples of the random vector x̂. This can be effected through Swendsen�s observation [4], that

the marginal density can be sampled without knowing its explicit form. Since we know the density for the
vector x, we can sample it using e.g., Metropolis Monte Carlo and obtain samples of the vector x̂ by keep-

ing only the first m variables of each vector x. After we obtain the samples of the vector x̂ we can apply the

rest of the algorithm as it is and estimate the parameter vector â. This procedure can be performed recur-

sively (as is done e.g., in real-space renormalization [3]), and thus obtain a ‘‘parameter’’ flow which contains

useful information about the system. This is done in the next section for the two-dimensional Ising model of

spins.

A word of caution regarding the numerical implementation of the algorithm. One can use Swendsen�s
algorithm to estimate the moments for the next renormalization step based on samples from the previous
step. This should be avoided. The moments needed for all the renormalization steps should be computed

using Swendsen�s algorithm at the finest level of resolution. At each step, we estimate the density using only

a small number of couplings. This introduces errors and thus, if we use the density at one step to compute

the moments needed for the next step, it can cause an accumulation of errors that can lead to false fixed

points (see also comment in [6]).

Note that if we are interested only in producing samples of the reduced vector x̂, Swendsen�s method

suffices. However, to use Swendsen�s method we have to compute first samples from the n-dimensional vec-

tor x and this can be very costly. What we offer here is a way of representing the marginal density for the
reduced vector x̂ with an analytical formula. All that we need to describe the marginal density is the
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parameter vector â. This is highly desirable if e.g., one wants to sample the marginal density in the future or

compute conditional expectations with respect to the marginal density. Suppose that we want to compute

the conditional expectation of a function hðx̂Þ with respect to a subset of the (already) reduced vector x̂. Let

the reduced vector be split up as x̂ ¼ ðx̂1; x̂2Þ, where x̂1 is m1-dimensional and x̂2 is of dimension

m2 = m � m1. Suppose that we want to compute the conditional expectation of hðx̂Þ conditioned on x̂1.
Since we know the analytical expression for pðx̂; âÞ; this amounts to the calculation (e.g., using Monte Car-

lo) of the quantity
Eâ½hðx̂Þjx̂1� ¼
R
Nm2 hðx̂Þ expð�hâ; ŵðx̂ÞiÞ dx̂2R

Nm2 expð�hâ; ŵðx̂ÞiÞ dx̂2
¼
R
Nn�mþm2 hðx̂Þ expð�ha;wðxÞiÞ d~x dx̂2R

Nn�mþm2 expð�ha;wðxÞiÞ d~x dx̂2
; ð17Þ
where the second equality follows from (13). If we did not have an analytical formula we would have to

sample the original n-dimensional vector fixing the values of x̂1; i.e., use the second equality in (17). This

can be very costly when n is large (as it happens usually in applications). On the other hand, the compu-

tation in the first equality in (17) is much cheaper. This can be useful e.g., in the inference problem for a

graph with cycles (in the context of graphical models), where one can compute the marginal densities on

the different cliques (fully connected clusters of nodes) and store the parameter vectors for further calcula-
tions within the individual cliques. In fact, the process can be parallelized, by assigning a processor to one

(or a few) cliques. It would be interesting to see how this algorithm compares with the junction tree algo-

rithm (see [14]) whose complexity grows exponentially with the size of the maximal clique. The present algo-

rithm can be applied directly on the clique tree (an acyclic graph whose nodes are formed by cliques of the

original graph) without the need for triangulation. It is also interesting to see how the present algorithm

compares with variational inference methods [1].

From Eqs. (4) and (15), we see that the problem of maximum likelihood estimation of the parameter

vector for both the full system and the reduced system is transformed into the same moment-matching
problem, i.e., involving the same number and same form of potential functions. The only difference is in

the dimensionality of the random vector involved.
3. Numerical results for the 2D Ising spin model

In this section we apply the algorithm from Section 2 to the 2D Ising spin model. Since the system has a

known exponential probability density, we can check the accuracy of the algorithm in computing this den-
sity starting from a different initial guess. Also, the Ising model exhibits a phase transition with known

properties. We use the ‘‘renormalized’’ version of the algorithm (Section 2.2) to compute the critical

temperature.

Consider a square lattice of size L. We denote a lattice site as Ik = (ik, jk) where ik, jk are integers and

k = 1, . . .,L2 (we assume that the sites are listed in a convenient order). We associate with each lattice site

a (spin) variable xk that can only take the values ±1. The variables on the whole lattice will be denoted by

x ¼ ðx1; . . . ; xL2Þ. The lattice is periodic with period L. The Ising model of interaction of the variables (see

e.g. [3]) is defined through the Hamiltonian
H ¼ � 1

T

X
hI;Ji

xIxJ ; ð18Þ
where Æ æ means summation only over nearest neighbors. The parameter T is interpreted as the temperature

in the context of statistical mechanics. The model�s probability density function is
1

Z
expð�HÞ; ð19Þ
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where Z is the normalization constant (partition function). The Ising model has been used extensively to

study phase transitions (as a function of the temperature) in magnetic materials. According to Onsager�s
analytical solution, the average magnetization m ¼ E½

PL2

I¼1xI=L
2� exhibits, in the limit of L ! 1, a transi-

tion from zero to non-zero values for temperatures T 6 Tc = 2.269.

We can cast the probability density of the Ising model in the form of an exponential density as the ones
described in Section 2. To do that we will need to define groups of variables around a site, say I = (i, j) (see

[6]). These groups have nothing to do with the groupings of variables that we will use later for real-space

renormalization. The groups are defined as follows: group 1 contains only xI. Group 2 contains the vari-

ables whose distance from I is 1 (the nearest neighbors), group 3 contains those variables whose distance isffiffiffi
2

p
, group 4 contains the variables whose distance is 2 etc. We use the members of the groups to define the

corresponding collective variables XI, k as
X I;k ¼
1

nk

X
group k

xJ ; ð20Þ
where nk is the number of variables in group k. These collective variables can be used to form translation-

invariant polynomials in x, for example,
PL2

I¼1X I ;1ðX I ;kÞp. Using this notation, the Hamiltonian for the Ising
model can be written as
H ¼ � 2

T

XL2
I¼1

X I ;1X I ;2 ¼
2

T
�
XL2
I¼1

X I ;1X I ;2

 !
:

For the case of the Ising model, we will include a minus sign in the definition of all the potential functions.

The thermodynamic properties are the same whether or not we include the minus sign [3]. In the numerical

simulations we used the following 8 potential functions:
wk ¼ �
X
J

X J ;1X J ;kþ1 for k ¼ 1; 2; 3; 4; 5;

wkþ5 ¼ �
X
J

ðX J ;kþ1Þ4 for k ¼ 1; 2;

w8 ¼ �
X
J

X 2
J ;2X

2
J ;3;

ð21Þ
where the summation extends over the whole lattice. The Hamiltonian for the Ising model can be written as

Hða; xÞ ¼
P8

k¼1akwkðxÞ, with a1 = 2/T and al = 0 for l = 2, . . ., 8. The coefficients for the potential functions

w2 . . .w8 acquire nonzero values when we compute marginal densities for subsets of x.

The algorithm we described in Section 2 can be used to estimate the parameters of an unknown expo-

nential density or to renormalize a known density. As a test of the first aspect of the algorithm we compute
the parameters for the Ising model. In other words, we prescribe some initial values for the parameters ak,
k = 1, . . ., 8 and we apply the algorithm. The parameters computed by the algorithm should converge to the

true values a1 = 2/T and al = 0 for l = 2, . . ., 8. We should note here, that the representation we are using is

not minimal and thus, there are more than one admissible sets of parameters for the same moments. In the

case of the Ising model, if we want to recover the values a1 = 2/T and al = 0 for l = 2, . . ., 8 we should start

close to these values to ensure that we are in their basin of attraction. Of course, any set of parameters that

is produced from a convergent run of the algorithm is equally acceptable. In Fig. 1 we compare the value of

the parameter a1 as determined by the algorithm with its true value 2/T for different temperatures. The ini-
tial guess was 1.9/T for a1 and zero for the rest of the parameters. The results shown are for 105 Monte

Carlo steps per spin (each step involves a sweeping of the whole lattice). The agreement for a1 shown in

Fig. 1 is within the accuracy of the Monte Carlo computation. The values of the rest of the parameters

a2, . . .,a8, remain zero to within the accuracy afforded by the Monte Carlo sampling. The relative and
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Fig. 1. Comparison of the value of the parameter a1 as determined by the algorithm with its true value.
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absolute error tolerances were set to 0.001 and the calculations were performed using a 40 by 40 lattice. The

algorithm converged after 5–7 iterations depending on the temperature. The condition number for the Jaco-

bian matrix was about 104 for all temperatures.
We now turn to the main focus of the present paper, which is the computation of marginal densities for

known exponential densities. Suppose that we begin with an Ising spin square lattice of size L. We split the

vector of variables x as x ¼ ðx̂; ~xÞ. The vector x̂ contains the variables whose marginal density we want to

compute and ~x is the vector of variables we wish to eliminate. We use the same 8 potential functions as

above. The exponential density for the vector x is given by exp(�H(a,x)), where the Hamiltonian

Hða; xÞ ¼
P8

k¼1akwkðxÞ; with a1 = 2/T and al = 0 for l = 2, . . ., 8. We can apply the algorithm of Section

2.2 and obtain the density expð�Ĥðâ; x̂ÞÞ=ZðâÞ for the vector x̂: The Hamiltonian is

Ĥðâ; x̂Þ ¼
P8

k¼1âkŵkðx̂Þ; where the parameter vector â contains the new values that were computed from
the algorithm. Of course, once the density for x̂ is known, we can repeat the procedure and find the density

for a subset of the vector x̂ and so on. We can make this recursive elimination of variables more systematic.

Suppose that we start with a lattice of size L · L with L even. We denote the vector of spins corresponding

to this lattice as x(0). We construct 2 · 2 blocks of variables and we represent each block by one variable,

say the lower left-hand corner variable of the block. The vector of the new variables is denoted by x(1) and

occupies a lattice of size L/2 · L/2. There are different ways of assigning values to the new variables. Here

we pick the ‘‘majority’’ rule. This means that if the sum of spins in a block is positive, the new variable is

assigned the value of 1, if the sum of spins is negative the value �1. In the case of a tie, the value of the new
variable is taken to be the value of the spin on the lower left-hand corner. Then we apply the algorithm and

we obtain the density for the new variables. As we have already mentioned, we are not sure beforehand,

that the potential functions we choose are enough to describe all the couplings that may appear among

the new variables. Thus the marginal density that we compute is usually only an approximation to the

marginal density of the new variables. Once the density for the vector x(1) is computed, we can repeat

the coarse-graining process and obtain the density for the vector x(2) which occupies a lattice of size

L/4 · L/4 and so on. The corresponding parameter vectors a(0),a(1),a(2), . . . define a ‘‘flow’’ in the space
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of parameters. As is known [3], the flow of parameter vectors contains useful information for a system near

its critical point. In addition, we can store the parameter vectors for the different marginalization steps for

future use.

We use the parameter vectors for the successive renormalization steps to locate the critical temperature

of the Ising model. For temperatures T < Tc the renormalization steps couple ever more distant spins while
for T > Tc the spins become successively decoupled. We can measure this successive coupling or decoupling

by focusing on the quadratic terms (the terms �
P

JX J ;1X J ;kþ1) in the expansion of the Hamiltonian and cal-

culating the ‘‘second moments’’ of their associated parameters
M ðjÞ
2 ¼

Xlq
k¼1

d2
ka

ðjÞ
k : ð22Þ
The superscript j is used to denote the parameters at the jth renormalization step and M ð0Þ
2 ¼ að0Þ1 is the sec-

ond moment at the fine level (j = 0). The parameters dk, k = 1, . . . , lq denote the distance from J of the spins

in the group k, while lq is the number of quadratic terms in the expansion of the Hamiltonian. For our

experiments lq = 5 (see the definition of potential functions in (21)). In Fig. 2 we show the evolution of

M ðjÞ
2 for j = 0,1, . . ., 4 and different temperatures. The fine level lattice is 80 by 80 and each renormalization

step (based on the majority rule) decreases the number of spins by a factor of 4. For all the renormalization

steps, the parameters were initialized at their values at the fine level. This means, that for j = 1, . . ., 4 we

started the algorithm with aðjÞ1 ¼ 2=T and aðjÞk ¼ 0; k ¼ 2; . . . ; 8. As expected from the analytical results, be-

low the critical temperature the second moment increases with successive renormalization steps, while for

temperatures above the critical one, the second moment decreases with each renormalization step. The tem-

perature for which the second moment remains constant (within the accuracy afforded by Monte Carlo

sampling) should be the critical temperature. For our choice of potential functions and 105 Monte Carlo

steps per spin, the critical temperature is found to be Tc � 2.275, an error of about .3%. This can be seen
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Fig. 2. Second moment for successive renormalization steps for different temperatures.
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Fig. 3. Second moment for successive renormalization steps for temperatures close to the critical.
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in Fig. 3 where we have focused on a tighter temperature interval around the critical temperature. For

T = 2.275, the second moment remains constant to within the accuracy of the Monte Carlo sampling.

The relative and absolute tolerances were set to 0.001. The Levenberg–Marquardt algorithm converged

after 5–12 iterations depending on the temperature and the renormalization step. As before, the condition

number for the Jacobian matrix was about 104 for all temperatures and renormalization steps.

Finally, we should comment on the present algorithm�s performance relative to other renormalization

algorithms available, e.g., the Gupta–Cordery (GC) algorithm (see [15] and references therein). The com-
putational complexity of the present algorithm is comparable to the GC algorithm. In the GC algorithm,

one guesses a form for the marginal density and then has to perform Monte Carlo sampling that involves

both the original and the block variables. In the present algorithm, the Monte Carlo sampling is done once

on the level of the fine lattice and the samples are used to evaluate the moments needed for the subsequent

renormalization steps. The second part of the GC algorithm is to perform iterative refinement of the guess.

The analog of this part in the present algorithm is the iterative solution of the optimization problem. As far

as accuracy is concerned, the GC algorithm and the present algorithm are similar.
4. Conclusions

We have presented an algorithm for the estimation and renormalization of exponential densities. The

algorithm is based on the maximization of the likelihood and results in a moment-matching problem.

The matching problem is solved as an optimization problem with the Levenberg–Marquardt algorithm.

For the case of renormalization, the moments for the reduced system are computed using Swendsen�s ren-
ormalization method. We have exhibited the use of the algorithm by applying it to the Ising model, where it
reproduces the analytical results with good accuracy.
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We hope that the algorithm can be useful in diverse areas where one needs to estimate an unknown den-

sity or marginalize a known density. Such areas range from applications to graphical models (the inference

problem) to reductions of systems of differential equations. In the latter case, we are planning to apply the

algorithm to estimate the density of solutions produced by finite-difference or spectral formulations of par-

tial differential equations that do not have a natural candidate for a density. An analytical expression for
the density in such situations can be helpful in the process of constructing reduced models [7].
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